THE KANIMETHOD OF MOMENT DISTRIBUTION

Similarly, all rotation contributions of the second cycle are entered below the
relevant fixed-end moments,

(b) Displacement Contributions

M{ = Mgy =My = —0.50(0.41 +0.17 — 1.62 — 1.17 +2.12 + 1.56)
=_-0.74 kN m

Il

M)y = Mz = M&p = —0.50(0.17 + 0.00 — 1.17 +0.00 + 1.56 + 0.00)

—0.28 kN 'm

This completes the second cycle operations. The procedure is then repeated until
two successive cycles furnish sets of values differing by a very small acceptable
amount, In this particular example, the scheme of computation shows four cycles
to be sufficient (Fig. 5.7).

Final End-Moments, M;,,, = an + 2‘M;;n M S+ M;;n

m
Map = 0.0 +2(0.0) + 0.33 —0.45 = —0.12 kN m
Mpa = 0.0 +2(0.33) + 0.0 — 0.45=0.21 kN m
Mpg = 0.0 +2(0.22) + (=0.75) = 0.31 kN m
Mg = —9.0 +2(1.12) + (=0.75) = —7.51 kN'm

and so on,

5.3.2 Horizontal Loading

The principle in determining the displacement contributions in frames subjected
to horizontal loading remain the same as in vertical loading. However, the
presence of horizontal loads on the frame requires an additional effort in the
computation.

Consider a frame subjected to horizontal loads applied as shown in Fig. 5.8(a).
Again, the analysis may be carried out in two steps:
{a} No-Sway Solution
Artificial joint restraints are applied at storey heights as shown in Fig. 5.8(b) to
prevent sidesway. These joint restraints may be determined from no-sway

solution (section 5.3).
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(b} Sway Solution

Since the artificial joint restraints do not actually exist, they may be eliminated
by applying a consistent force system (Fig. 5.8(c)) whose storey shear at any
section is equal in magnitude but opposite in direction to the algebraic sum of
the applied horizontal force above that section. Designating the sum of the
restraint forces above the rth storey as the storey shear V,, the horizontal
equilibrium condition above the rth storey requires that

V,=Hy +Hy+.. .H =3H
1
=3 — My + My [5.19]
r hr

Assuming the columns are not subjected to intermediate horizontal loads
(such as by applying equivalent loads at the storey heights that will give the same
global effect on the frame), all fixed-end moments become zero. Using [5.8] to
expand the end-moments M;,,, and M,,;, [5.19] may be written as

] ! "
V, = ; ? [B(Aﬁm +Mmj) + 2Z"fjm]

¥

Rearranging:
" 31 Vh : :
M == [_ 5 M, +Mm!-)] [5.20]

The quantity V,h,/3, which is one-third of the product of the storey shear and
storey height, is defined as the storey moment M,.

P

3
Equation [5.20] gives the sum of the displacement contributions of all columns
in the rth storey. As explained in the case of vertical loads, the moment in any

column j—m is obtained by distributing this sum in proportion to their K values.
Thus

My, =Dy, [M, +>r:(M,-’m + M) [5.21]

Notice that the displacement factors Dy, are the same as for vertical loading, so
that the displacement contribution in the case of horizontal loading (see [5.21])
differs in the extra term M, from the case of vertical loading (see [5.17]).
Therefore, the analysis of frames subjected to horizontal loading differs from the
analysis of frames with vertical loading only by the extra term M, which must be
calculated for each storey and be added algebraically to the sum of the rotation
contributions of the two ends of the columns of the storey considered.
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EXAMPLE 5.3  Find the joint moments of the frame subjected to horizontal
loads as shown in Fig. 5.9.

The relative stiffness values, rotation factors, and displacement factors are the
same as in Example 5.2 and are recorded in the computational schemes as usual

(Fig. 5.9).

3.0kN
emeevEe
G I H I I
E
1.51 I.51 1.51 -
8.0kN
D 2] E 2] F
S
21 21 21 v
A B C S
2,277 27 7
! 6.0m | 6.0m
r !
Figure 5.9
Storey Shears and Storey Momentis
(i) Second storey
Storey shear, V, = 3.0 kN
V.h, 3.0(3.0
Storey moment, M, = — —— = — (3.0) =—-3.0kNm

3 3

(ii) First storey
Storey shear, ¥, =3.0+8.0=11.0kN

11.0(4.0
Storey moment, M, = — —;—) =—14.67kN m

The storey moments are recorded in the computational scheme (Fig. 5.10) at
the centre of the relevant storey.
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Figure 5.10

Displacement and Rotation Contributions
In frames subjected to horizontal loads, the displacement contributions are

usually significantly larger than the rotation contributions. Hence, the displace-
ment contributions are calculated first as illustrated in the following calculations.
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First Cycle

(a) Displacement Contribution, M;,,, = Dj,,[M, + %} (M + Mp)]

Since the rotation contributions are initially zero, the displacement contributions
are

Mpe = Mgy = Mpp = —0.5(-3.0 + 0.0 + 0.0)
=+1.50kN m

Mpp = Mgg + Mg = —0.5(—14.67 + 0.0 + 0.0)
=+7.33kNm

(5) Rotation Contributions, M = Rjm My + (M + Mjpn)]
(i) Joint G:
At this joint Mg = Myjg =Mpg =0
and M5p = —1.50 kN m

Mp = —0.375(0.0 + 0.0 + 1.50) = —0.56 kN m
Mgy = —0.375(0.0 + 0.0 + 1.50) = —0.19 kN m

(ii) Joint H:
At this joint, My = Mgy =My =0
MGy =—0.19 kN m
and Mgy =+1.50 kN m
Thus

My;g = —0.100(0.0 — 0.19 +0.0 + 0.0 + 1.50) = —0.13 kN m
Similarly

My = —0.300(0.0 — 0.19 +0.0 + 0.0 + 1.50) = —0.39 kN m

My = —0.100(0.0 = 0.19 +0.0 + 0.0 + 1.50) = —1.3 kN m

In the same manner all the rotation contributions are calculated until the
first cycle is completed.
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Second Cycle

{a) Displacement Contributions

The displacement contributions are obtained by using [5.21] where the results
from the first cycle are used to obtain approximations.

Mpg = Mgy = Mgy = —0.5(-3.0 —0.50 — 1.55 —0.39 — 1.11 — 0.51 — 1.43)
=+4.28 kN m

Mpp = Mgg = M{g = —0.50(—14.67 — 1.55 — 1.11 — 1.43)
=+9.38 kN'm

(b) Rotation Contributions

There are no particular points to be noted here and similar calculations are
performed until the second cycle is completed. The procedure is repeated until
two successive cycles furnish sets of values differing by a very small acceptable

amount. In this particular example, the scheme of computation shows seven
cycles to be sufficient (Fig. 5.10).

Final End Moments, Mj,,, = Mz, + 2Mjp, + My + My,

Map =0.0 +2(0.0) —3.03 — 11.35=+8.32 kN m
Mpa =0.0 +2(—3.04) + 0.0 — 11.35=45.29 kN m
Mpg =0.0 +2(—2.02) — 1.37= —541 kN m

Mpg =0.0 +2(—3.04) — 1.62 + 7.78 = +0.10 kN m
Mgp =0.0 +2(~1.62) —3.03 +7.78 = +1.51 kNm
Mgy =0.0 +2(~0.54) —0.47 = —1.55 kN m

and so on,

5.3.3 Frames With Columns of Unequal Heights
For a frame with a storey containing columns of unequal heights, the calculations
of the rotation contributions in all storeys remain the same as described earlier.

Also, the computation of the displacement contributions for those storeys with
equal heights are not altered. However, in establishing the governing equations
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for the calculation of the displacement contribution for the storey with unequal

heights, supplementary consideration is needed.

Consider the frame shown in Fig. 5.11. In the storey which has columns of
unequal heights, an arbitrary column that appears most frequently is taken as

the storey height. Let

h, = storey height in the rth storey which has columns of unequal

7%

heights
hjm = height of any other column j—m in the rth storey
FJ, ExmrEnf-
Fg T
R
R
hy im
L
7
Figure 5.11

Writing the equilibrium condition of the horizontal forces at the rth storey

Vyt 2V =0
or

1
Vy+Z h_- (-M}m +Mm;)

= (Mjm +Mpy) = 0

;m
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Introducing a factor defined as the height reduction factor for the j—m
column in the rth storey,

h
Cim =7 [5.23]

" hm
Equation [5.22] is written as
Q,h, + :Lij(Mjm +M,,)) =0 [5.24]
Substituting the values of M;,, and M,,,; given by
Mim =My + 2, M+ M,
M, =ME,; +2M,,; + Mj,, + My,

into the shear equations and taking into consideration that the fixed-end
moments are zero,

V,h, + §q-m(3mgf,,,, + 3Mp; + 2Mjpy) = 0
Therefore

2 CpmMijm = 1.5y + Z Cipn(Mjpm + M) [5.25]
where

Vih

M, = T” = storey moment

Since

_ 6EK jy Ajm

jm Rim
them My, is proportional to Kjp,/hj,, and also to Cj,, Ky, - Also, since A, is the
same for all columns of the storey under consideration,
M;, _ GimKjm
2CimMjm  ZCinKim [5.26]

From [5.25] and [5.26], the basic equation for determining the displacement
contribution Mj,, may be written as

My = Dl (M + X Ci (M + M) [5.:27]
where

CimK;
i L

For the storey with unequal column heights, the following changes must be
noted:

) = displacement factor
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(a) areduction factor Cj,, must be introduced,;
(b) amodified displacement factor D,, must be used.

Having introduced these factors, [5.26] and {5.27] along with [5.8] and [5.18]
are used to determine the end moments.

5.4 PROBLEMS

5.1 Solve problem 3.1 using Kani’s method of moment distribution.

5.2 Solve problem 3.2 using Kani’s method of moment distribution.

5.3 Solve problem 3.3 using Kani’s method of moment distribution.

5.4 Solve the problem of Example 4.7 using Kani’s method of moment
distribution.

5.5 Solve the problem of Example 4.8 using Kani’s method of moment
distribution.
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6. Influence Lines for
Indeterminate Structures

6.1 INTRODUCTION

The determination of the maximum and sometimes the minimum structural
effects of the appropriate load system is an important preliminary step in the
analysis and design of structures. Structures subjected to moving or movabie
loads invariably involve the calculation of the maximum or minimum values of
the bending moment, shear force, deflection and so forth, by preparing the
influence lines for the various structural effects.

The influence lines for statically determinate structures may be drawn by
connecting a few key ordinates with straight lines. However, influence lines for
indeterminate structures are curved and therefore cannot be drawn so easily.
The first step in preparing the influence lines for the various functional values is
to determine the influence lines for the redundants. The next step then is to find
the influence lines for any other reaction, moment or shear, etc. that can be
computed by statics. The influence lines for different functions in statically
indeterminate structures may be obtained using the Muller-Breslau principle
backed by computational techniques such as the conjugate beam principle, Cross
moment distribution, and energy methods.

6.2 STRUCTURES WITH A SINGLE REDUNDANT REACTION

The influence lines for indeterminate structures may be constructed by using
either statical or kinematic methods, When using the statical method considera-
tion of equilibrium alone is utilised. This may be demonstrated by considering a

propped cantilevered beam of uniform cross-section. It is desired to prepare an
influence line for the vertical reaction at support B shown in Fig. 6.1.
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| X P=l
A} n B  Actual
1 I S,
- - |
lP=I
a Primary
a , structure
R
P =l
: l
4

. l.\
M diagram

e

m diagram

Figure 6.1

The reaction Ry is determined from the compatibility condition

Rpbpp + 850 =0 [6.1]
from which
)
Rp=— 22 [6.2]
b
The deflections 8;, and &, are determined from the M and m diagrams (Fig.
6.1).
5 = J‘ Mmdx
bo EI
1 x_z) 3L —x) _ x?(3L —x)
CEI\2 3 ~ GEI
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and

m?dx
8pp = El

_ 1 {ﬁ) L) _L?
EI \ 2 3 3ET
The reaction at B is therefore

b0 _X2(3L — X)
8pb 213

RB=_

This equation gives the value of the reaction Rg when the unit load P =1 is
applied at any position along the beam which is therefore the influence line for
the reaction at B. Using statics, the influence line for any other reaction, shear or
moment may be determined.

Suppose it is required to find the influence line for the shear at the midspan
of the beam. From statics, the following may be determined:

2
x“(3L —
(Vchest = —Rp = __(_Q_L,Tfl for0<x <L/2
2(3L —
(Vcright =1 —Rg = 1 —%forl,/2<x <L

The influence line for the bending moment at the midspan of the beam may
also be evaluated in a similar manner,
The bending moment at midspan is

M: =R L
C B 2
2(3L —
=£i&;39&no<x<Lm
M-~ =R £ l(x £)
C B 2 9
_x2(3L —x) —4L%x +2L3

272 forL[2<x <L
The ordinates of the influence line at quarter points for the reaction at B, Ry,
the shear at midspan, V-, and the bending moment at midspan, M., are given in
Table 6.1 and also shown in Fig. 6.2.

To demonstrate the kinematic method of constructing influence lines consider
the same propped cantilever beam of Fig. 6.1 where the reaction Ry is taken as
redundant. Compatibility condition gives

Rpdpp +6p0 =0 [6.3]
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Table 6.1 Ordinates of influence lines

X RB VC MC
0 0 0 0
0.25L 0.0859 —0.0859 0.0430L
—0.3125
0.50L 0.3125 or 0.1563L
+0.6875
0.75L 0.6328 +0.2975 0.0664L
L 1.0 0 0
A El = Constant c B

L/4 L/4 L/4 L/4

IL for Ry

!.000\

\ 0.0859

)
45 0. sk

IL for V.

-0.0859 /

0.1563L -0.3125 / 0.6875 \ 0.3125

0.0430L
0.0664L

\ IL for M,

Figure 6.2
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In this case the actual loading on the beam which produces the displacement
8po is the unit load P = 1 at the movable point n, so that the second term can be
written as §,,,. Hence

)
Rp=--22 [6.4])
Svp

Using Maxwell’s Reciprocal Theorem by replacing the displacement 8, by 6,p,

Rg = — (*Sn_b [65]
)
The above equation forms the basis for determining the ordinates of influence
lines since the displacements in both the numerator and denominator are due to
the same unit vertical load acting at B. The value of §,,;, represents the displace-
ment in the direction of Ry due to a unit load P = 1 travelling along the beam.
The variation of §,,;, represents the elastic curve of the beam due to a unit load
at B in the direction of Rg. Any of the methods of displacement computation
may be used to find the shape of the elastic curve of the beam under a unit load
at B. By dividing the ordinate of this curve by a constant factor (-8, ) gives the
ordinates of the graph representing R when a unit load P = 1 traverses the
beam. This curve by definition describes the influence line of Rg.
The elastic curve §,,;, may be obtained using the conjugate beam method as
shown in Fig, 6.3.

A% L ’B
X | Rg=1

{b) Conjugate Beam

{c) /L for Ry
Figure 6.3
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The displacement at any point # due to a unit load at B is

e [ () (2) 252 )

2
x
= _— (3L —
o1 CL =)
In a similar manner the displacement at B due to Rg = 1is
L3
OSpp =——
bb " 3ET

Hence, the equation of the influence line for the reaction at B becomes

Snb _x2(3L -_ x)
Spp 2L3

Rp = —

The kinematic method may also be used to construct the influence line for
internal stress resultants such as moments and shears. For the propped cantilever
beam, the bending moment at midspan may be taken as the redundant reaction
moment by introducing a hinge as shown in Fig. 6.4 if it is required to draw the
influence line of the moment at midspan.

The redundant reaction moment is determined from compatibility conditions
at the hinge such that the change of rotation of the two continuous sections to
the right and to the left of the hinge must be zero. Thus

Mcbee +8e =0
or
8
Mc=—7= [6.6]

cc

Therefore, the influence line for the bending moment at midspan will have the
same shape as the deflection of the beam with a hinge at midspan. The conjugate
beam method will be sufficient to determine the moment at C, which will be

equal to §., and the deflections at selected points along the span. For example,
at point n (0<x <L/2)

8,0 = moment at n# of the conjugate beam

1 (2(1, — x)x? +2x3)
EI 2L 3L

_ x? (BL —x)
EIL 3
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P
| — rHinqe
5! e B
n = =
M.=17¢c” M.=I % (a) Primary
Ly | L2 | structure

(b) Deflected
shape
2
El
HH‘“'--.______
Al - m Bl (c) Conjugate
VQM c' ’ﬁ» beam
Sne
cc
{(d) /L for Mc

Figure 6.4

8¢c = Reaction at C of the conjugate beam

w0 () 64))/ ()

_AL
3E1

The bending moment at point » is

dne
Mc =0
© b
(3L -
SXOL o) o<k <L
4L
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Similarly, when x > L/2

2
X 3L —x 4L
& = — - L[2
ne EIL( 3 ) 3gr ¢ L)

The corresponding bending moment is

_x2(3L - x) — 4L%x +2L°
4L

A forL[2<x<L

Notice that the above expressions are identical with those obtained by statical
method.

When using the kinematic method to determine the influence line for the
shear at the midspan of the propped cantilever beam, the beam may be made
determinate by first cutting at C and inserting a two-bar linkage as shown in
Fig. 6.5. This linkage system cannot carry shear force and distorts into a
parallelogram shape thus establishing an equal rotation of the left and right
tangents at C.

The displacement of the beam at point n (0 <x < L/2) determined from the
conjugate beam is

o[-0 (5) () ()]

2

x
=_ (3L —
El (BL—x) for0<x<L/2

o L L\(2L)| _L1*
S“_MC"EI[(L)(z)(3)]_3EJ

The shear force when the load is at point n is

)
Ve = nc
BCC
x2(3L — x)
-
Similarly, when x > L/2
x2  x?
8,.=L3|3E] - — - — (3L —
ne =L/ 6ET ~ 6m1 L~ %)

The corresponding shear force is

Vc—aﬁ

BCC

_x2(3L - X)

=1 2L3

for L[2<x <L
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Bar linkage

l n
A 1 3£ — B (a) Primary
A ﬂ C % structure

I — |/
|

{b) Deflected
shape

{c) Conjugate

1 ]_3 b
. L eam
Mc T 3El
) )
\inc\ l“ (d) /L for V¢
L—é—l r_g‘,_| (e) Bar Linkage
- + detail
< | 1 al
(== —o—|
— —
Figure 6.5

It may be concluded, therefore, that the kinematic method permits a
simplified approach for the determination of the shape of the influence line for
any action. This shape is identical to that of the elastic curve of the corresponding
primary structure loaded by a unit force or moment at the point the redundant
has been removed. This analogy, first recognised by Miiller-Breslau, provides the
most widely used and convenient method of computing the influence lines of
indeterminate structures. The principle of Miiller-Breslau may be stated as
follows:

The ordinates of the influence lines of any function (such as reaction, moment,
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shear) of any structure is represented, to some scale, to those of the displace-
ment curve which is obtained by removing the restraint corresponding to the
relevant function imposing in its place a unit distortion such as rotation or a
linear displacement.

6.3 INFLUENCE LINES FOR MULTIPLE REDUNDANT STRUCTURES

6.3.1 Influence Line for Bending Moment

Applying the Miiller-Breslau principle to construct the influence line for moment
at any point E between the support B and C of Fig, 6.6(a), a hinge is inserted at
E so that the moment capacity of the beam is removed without impairing its
shear capacity.

- (a)
79;“" —’"’/7797
] - rd £ / 3 - # ‘A

(b)

(c)

Figure 6.6

The beam is subjected to two force systems as shown in Fig. 6.6(b). A unit
load is applied at » with the beam deflecting as shown in Fig. 6.6(a). The unit
load is removed, and equal and opposite moments M are applied on either side
of the hinge. The deflected shape of the beam is shown in Fig. 6.6(c). The¢ shape
of the deflected beam is to some scale the influence line of M. Thus
Oen _ OnE

Mg = [6.7]

Oge  Ogg
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If Opr = 1 radian, then
Mg =8, [6.8]

Thus the influence line for Mg is obtained by dividing the ordinates of the
deflected shape by g or by setting O equal to unity.

6.3.2 Influence Line for Shear Force

Let it be required to draw the influence line for shear at point E of the beam of
Fig. 6.7(a). The beam is cut at E such that the shearing resistance is removed
without impairing the flexural resistance. The beam is cut at E and a linkage
system or slide device is inserted which cannot carry shear force and thus which
permits a relative transverse deflection without introducing a change in slope of
the left and right tangents at E,

N [
i —~ l\ . n (@)
s AR T 2
A B c D
V, =l
- T T~ x‘"“n., [ "o (b)

‘\ / e/ OEE
/—\ (c)

Figure 6.7

The beam is subjected to a unit load at n resulting with a vertical displacement
0gn at E. After removing the unit load, a pair of unit loads are applied as shown
in Fig. 6.7(b). The shear force at E is given by

6En ‘SnE
Vg=—"7"=—"+ 6.9
*Ske OkE (6]
If 8gg = unity, then
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Therefore, the influence line for Vg is obtained by dividing the ordinates of the
deflected shape by 6.

EXAMPLE 6.1 Compute ordinates of the influence line for the moment at B
of the beam shown in Fig. 6.8. Use intervals of 2.5 m for span AB and 4.0 m for
span BC. The moment of inertia is constant.

Using the Muller-Breslau Principle, the capability of the beam to resist moment
at the section for which the moment influence line is desired is removed by
introducing a pin. Unit moments, say in kN m, are applied to the beam at each
side of the pin at B. The modified beam, which will deflect as indicated by the
dashed line, is shown in Fig. 6.8(b). According to the Miiller-Breslau Principle,
the various influence line ordinates are computed from the relation

Thus, the values of 6z, as well as the deflections at the necessary sections of
the modified beam, may be evaluated using the conjugate beam method.

A T
A
-

(a)

i
ig
g

Iom | 16m |

Hinge —— T T T —
PR B /’/ 1(8 H“"-H..
//"'" _‘"--__“_\ I DB -
¢ J/ > C )
s

{c)

(d)

Figure 6.8
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Determination of the reactions (slopes):

(10:(1 16 x 1
+

=8.667=95
3 2 ) BB

1 (16x 1
== =2.667
Re =3 ( 2 )

Determination of moments (deflections):

M10=0

Mg =2.667 x 12 —

0.
M-,_5=1.667x7.5—( 5 X 75) (—7——5-) = 5.469

2.0 x 0.75
——;——) (—) = 14.00

8 x 0.50
Mg =2.667x8— ( x 0 ) (E) =16.00

2 3
4x025\( 4
My, =2.667 x 4 — ( "20 25 )(§)= 10.00

The value of the influence line ordinate at each point is determined by dividing

each moment by dgp = 8.667. The resulting influence line is shown in Fig. 6.8(d).
The method of solution is first to assume that the fixed-end moment of

100 kN m exists at support B of the member BA with no other fixed-end

moments being considered to exist.

6.3.3 Influence Lines by Moment Distribution
The Cross method of moment distribution may be used to obtain more easily

influence lines for continucus beams and frames, The method is illustrated by
the following exampile.
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EXAMPLE 6.2 Compute the ordinates of the influence line for the moment at
B of Example 6. 1 using the moment distribution method.

The method of solution is first to assume that the fixed-end moment of
100 kN m exists at support B of the member BA with no other fixed-end
moments being considered to exist. Using the moment distribution method, the
momenis are obtained from the balancing operation. Next, a fixed moment of
100 kN m is assumed at end B of member BC and again a similar operation is
performed.

The moment distribution is shown in Table 6.2

Table 6.2
Joint A B C
Member AB BA BC CB
K 1/10 1/10 1/16 1/16
DF 1.0 0.6154 0.3846 1.0
0 +100 0 0
MAg =100 —61.54 —38.46
< +38.46 ~38.46
- 0 0 +100 0
Mic =100 ~61.54 ~38.46
)N ~61.54 +61.54

After finding the final moments due to the 100 kN m moment at every point
where fixed-end moments can exist, the equation for Mg in terms of the initial
fixed-end moments is

Mga = 0.3846ME, + 0.6154MFf

The fixed-end moments for a 1.0 kN load placed successively at each of the
points for which an influence line ordinate is desired, are computed below. The
fixed-end moment for a propped cantilevet toaded with one concentrated load P

18
Pab b

where a2 is measured from the pinned-end.

164

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com



INFLUENCE LINES FOR INDETERMINATE STRUCTURES

For span AB:
Table 6.3
xX=a b=10—-a ;’Mrf]_:;=mb(|:r+11’)/2)/)I.2
2.5 7.5 1.172
5.0 5.0 1.875
7.5 2.5 1.641
For span BC:
Table 6.4
x=a b=16 —a MEN =ab(a + b/2)L?
4.0 12.0 1.875
8.0 8.0 3.000
12.0 4.0 2.625

Note: The ordinate x is measured with support C as the origin. The above values

of the fixed moments are substituted in the equation above for Mg, and the
influence line ordinates are computed in Table 6.5.

Table 6.5
Point, x(m) MEA MEc Magp = 0.3846ME A + 0.6154ME
0 0 0
2.5 1.172 0.450
5.0 1.875 0.721
7.5 1.641 0.631
10.0 0 0
14.0 2.625 1.615
18.0 3.000 1.846
22.0 1.875 1.154
26.0

The influence line for the moment at support B is shown in Fig. 6.8(d).
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6.4 PROBLEMS

6.1 Draw the influence lines for the beam shown in Fig. P6.1 for the support
reactions R, and Rg.

I Sm |

|

BB A A
-

B D

10m | 10m | 10m

|
J 1 ~
Figure P6.1

6.2 Draw the influence lines for the beam shown in Fig. P6.1 for the moments
Mg and Ms.

6.3 Draw the influence lines for the beam shown in Fig. P6.1 for the shear S.
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7. Introduction to Matrix
Analysis

7.1 INTRODUCTION

After the introduction of high-speed computers, there has been a revolution in
structural analysis, not only in the computational methods but also in the
fundamental theorems. Since digital computers are ideally suitable for
automatic computations of matrix algebra, it was found desirable to formulate
the entire structural analysis in matrix notation. Matrix methods of structural
analysis are based on the concept of replacing the actual structure by an
equivalent analytical model consisting of discrete structural elements having
known properties which can be expressed in matrix form. Matrices are useful
in expressing structural theory and in producing an efficient means for carrying
out numerical calculations.

Two methods have been formulated in matrix structural analysis: the
flexibility and stiffness methods. It will not be possible in this textbook to
develop the two matrix methods to sufficient depth. The methods are developed
to the level of manual computation.

7.2 FORCE AND DISPLACEMENT MEASUREMENTS

It is evident that the overall description of the behaviour of a structure is
accomplished through the dual consideration of force and displacement
components at designated points. There are a number of ways of measuring a
force applied to a structure or its displacement at designated points in a
prescribed direction. Such points are commonly known as node points. The first
step in the analysis of structures is to idealise the actual structure into a
mathematical model which consists of distinct structural elements interconnected
through node points. In this text the word force includes moment.

167

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com



METHODS OF STRUCTURAL ANALYSIS

2 4
| N\ q___ 3
. V)
Figure 7.1

To designate the forces and displacements at the nodes of a given structure, a
coordinate system is used to identify these measurements. For the frame shown
in Fig. 7.1, for example, the system consists of four arbitrary coordinates which
are identified by four numbered arrows shown at the specific nodes or joints.
The forces are listed in column matrix [P] and is referred to as a force vector

and represents an ordered array of force measurements. For instance, the force
vector for the frame of Fig. 7.1 is represented by

[P] = [7.1]

Likewise, the coordinate displacement vector, having the same significance as in
the force vector may be expressed as

5,

[A] = [7.2]

In a similar manner, the forces and displacements at the nodes of a given
element may be designated by listing in column matrices [P] and [A],
respectively. For the beam element of Fig. 7.2, for example, with direct forces at

’) 14
, f

o

Figure 7.2
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node 1 and moments at node 2, the force vector is written as

le

(7] = ", [7.3]

M

y2 |

and the displacement vector as
uy ]

Yy

=
il

[7.4]
8x2

A necessary step in the formation of the force and displacement vectors is the
establishment of the node points and their location with respect to coordinate
axes. At this stage it is necessary to define two sets of orthogonal coordinate
systems. The first set is that of the structure, known as the global axes, and
consists of a single coordinate system. The second set is that of the members or
elements, known as the local axes, and consists of one coordinate system for
gach member. Since the members are in general differently oriented within a
structure, these axes originating at member ends will usually be differently
oriented from one element to the next. Global and local coordinates are
illustrated in Fig. 7.3(a) for trusses and in Fig. 7.3(b) for frames.

When forces are applied to structures, displacements occur. Alternatively,
when displacements are prescribed, node forces are necessary to produce them.
The relationships that exist between applied forces and displacements play an
important role in structural analysis. The force and displacement characteristics
of a structure are usually described under definitions of flexibility and stiffness
coefficients. The flexibility and stiffness coefficients depend on the force-
displacement properties of the structure and the coordinate system used.

A simple illustration of such relationships is obtained by considering a linear
elastic spring shown in Fig. 7.4. Single coordinate is indicated for the force and
displacement measurements. The force P will stretch the spring thereby
producing a displacement A at the end of the spring. The relationship between P
and A can be expressed as

A=fP [7.5]

In [7.5], f is the flexibility coefficient of the spring and is defined as the

value of the displacement at node 1. In general, a flexibility coefficient is the
value of the displacement at a point of the structure, in a given direction, due to
a unit force applied at a second point in a second direction.
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(b) x!
Figure 7.3

An alternative way is to establish a relationship between the force P and the
displacement A for the spring of Fig. 7.4. The force P required to produce a
displacement A units is determined from

P=kA [7.6]

In [7.6], k is the stiffness coefficient of the spring and is defined as the value
of the force required at coordinate 1 to produce a unit displacement at 1. In
general, a stiffness coefficient is the value of the force at a point of the structure,
in a given direction, due to unit displacement applied at a second point in a
second direction.

Figure 7.4
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Comparison of [7.5] and [7.6] reveals that the flexibility and the stiffness
of the spring are inverse to one another.

1
=—= k_'l
f k
[7.7]
1
k=—= f'_'l
f
Now consider a more general case consisting of an elastic structure, supported
against rigid-body motion, and subjected to loads Py, P,, . .., P, acting at
nodes 1, 2, . .., n. The corresponding set of displacements is represented by 4,,
A,, ..., A,. Forlinearly elastic systems, the principle of superposition is
applicable. Therefore, the displacement A; at node i is given by
Ai=ﬁ1Pl+fi2P2+---+f}‘nPn [7-8]
or more generally,
j=n
=1

By definition, fj; is the displacement produced at node i due to a unit load at
nodej (P; = 1). The coefficients f;, which are the displacements due to unit
loads, are known as flexibility coefficients.

In general, for # nodes, there will be n such displacements which may be
written in a single matrix equation

Ay fu fiz oo fia] [P
Ay far faa oo fan]| | P2
=1 ) . i [7.10]
_An ] _fnl fnz - fnn_ _Pn_
and which can be written in compact matrix form as
[A] = [F][P] [7.11]

where [A] is the column displacement matrix, [F] is a square flexibility matrix
and [P] is a column load matrix (load vector). This equation is of the same type
as [2.17].

Using matrix operation, one can solve the set of algebraic equations
represented in [7.10] for forces in terms of displacements. In matrix notation

[P] = [F17'[A] [7.12]
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where [F] ™! is the inverse of matrix [F]. It is noted that [7.12] has the
same form as [7.6] since it expresses forces in terms of displacements.
Consequently,

[F17! = [K] [7.13]

where [K] is the stiffness matrix which is the inverse of the flexibility matrix.
Thus

[P] = [K][A] [7.14]
The expanded form of [7.14] is

P [k ki oo k| A
P, kar ko .. k|| A2
1. . . . [7.15]
L‘Pn_ _knl kn2 te krm_‘ L_An_,

By definition, k;; is the force required at node i to produce a unit displacement
at node j only (zero displacements at all other nodes).

Flexibility coefficients for linear elastic behaviour have the property of
reciprocity which may be expressed analytically as

fij =i [7.16]

This equation defines symmetry of [F]. Since [F] is symmetrical the inverse of a
symmetric matrix will also become symmetrical. Therefore, [7.13] guarantees
that the stiffness matrix [K] will likewise be symmetrical. Consequently,

kij =kﬁ [7.17]

To illustrate these matrices consider a simiple cantilever beam of uniform cross
section shown in Fig. 7.5(a). To determine the flexibility matrix, the influence
coefficients must be determined by applying unit loads to the free end.

Due to axial load N = 1 (Fig. 7.5(b))

L
§,=—
" FA
6yn =0 [7.18]
6, =0
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g EA,EI lv\

N (a)

\ ﬁvv (C‘J

%
% )M= !
m
Figure 7.5
Due to vertical load V' =1 (Fig. 7.5(c))
8, =0
L3
Oy ==
vy 3EI [7'19]
L?.
0,=—
2FEI
Due to moment M = 1 (Fig. 7.5(d))
6, =0
LZ
6 = —
v JEI [7.20]
o L
M EI
The above results may be written in matrix form as
- -I - "ar —I
L
) — 0 0 N
" EA
L3 L?
5110 — —
Y 3EI  2FEI v [7.21]
L? L
0 0 — = M
| ] L 2E1  EI L |
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or, when written in compact matrix form

[A] = [F][P] [7.11]
In a similar manner the stiffness matrix may be determined by unit
displacements as shown in Fig. 7.6.
v
1 enc N
N
% M
| L -
[ 5 |
n-.
g N (b)
% v
\ 'i 6? =! [C}
Z)M
2 8= M (d)
b
Figure 7.6
Due to unit axial displacement (Fig. 7.6(b))
EA
N=— [7.22]
L
Due to unit vertical displacement (Fig. 7.6(c))
12ET
Ve—3 [7.23]
_ 6EI
ST ?
Due to unit rotation (Fig. 7.6(d))
6E1
Ve-Tr
[7.24]
48
L
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The above results may be written in matrix form as

INTRODUCTION TO MATRIX ANALYSIS

] [E4 1.
N —Z* 0 d,
12ET 6ET
14 0 3 2 8, [7.25]
6EI  4EI
M 0 —-—— —11°¢
| L L
which may be written in compact matrix form as
[P] = [K][A] [7.26]
The results may be checked by matrix multiplication
[F] K] = [K][F] = [1] [7.27]

It is noted that both [F] and [K] are symmetric matrices which is the
consequence of the reciprocal theorem.

7.3 THE FLEXIBILITY METHOD

The basic theory of the flexibility method is developed in this section, and the
concepts are clarified by numerical examples. The development of the method
rests on the basic principles of equilibrium of forces, compatibility and linear
force-displacement relationships.

Consider a structure, which is idealised into a model consisting of distinct
structural elements interconnected through node points, under the action of
generalised external forces applied at the nodes Py, P,, . .. P,. These may be
conveniently represented by a column matrix or force vector [P]

[P] ={P,,P, ... P,} [7.28]

Let it be assumed that the structure consists of m redundants which are
forces to be determined, that is

[X] ={X\, X3 ... X,,} [7.29]

which are the redundant forces or reactions. If such redundants are removed,
the structure becomes determinate and the internal forces are determined from
conditions of equilibrium alone. In an indeterminate structure, the internal
forces must also satisfy compatibility in addition to equilibrium. In dealing with
an indeterminate structure with m redundants, the redundants are treated as
additional loads on the statically determinate structure. It is assumed that the
structure is composed of an assemblage of j simple elements. Internal forces
exist in the structure at the node points. If the internal force members are
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represented by the vector [S] where
[S1=1{s; S, ... S} [7.30]
then, [S] can be related to the applied loads [P] and [X] as

— —

[S; ] Py Xy
Sa P, X,
=[Bol] . |t [B:i]] - [7.31(a)]
[ S} | P, X

which is written in compact notation as

[S]=[Bo] [P] + [B,][X] [7.31(b)]
or using partitioned matrices
P
[S]1=1[Bo | By] [X] [7.31(c)]

where, in general, [By] and [B, ] are rectangular matrices whose elements are
obtained from equilibrium conditions of the structure. For example, if P; is
taken as a unit load with all other loads including [X] held at zero, the internal
forces in the structure represent the coefficients corresponding to the ith column
in the [By] matrix. Likewise, the internal forces which result from a unit load X;
with all others held at zero represent the coefficients corresponding to the jth
column of the [B; ] matrix.

To formulate the compatibility condition, the principle of least work will be
utilised which may be stated as: The true values of the redundant forces are
those which make the strain energy U of the strained structure a minimum.

The strain energy is given as

1
U=E[SI Sz “ e S}] —Fl T —SlT
Fy S2
[7.32]
! Fidls; .
which is written in compact matrix form as
1
U= [SITIF] {S} [7.33]

In order to obtain the strain energy U in terms of the unknown {X},
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substitute [7.31(b)] into [7.33]. In doing so, note that the transpose {S T may
be written from [7.31(b)] as

P T
=1 -- : T
[S] [X] [Bo | By]

=[PiX][BoiBy]" [7.34]
Substituting [7.31(b)] and [7.34] into [7.33]

j— 1 1 P
U—E [P X] [H] I:X] [7.35]

where
[H] = [Bo : B;]1T[F][Bo | By] [7.36]

Since [P] and [X] are the applied and redundant forces, respectively, it is
convenient to partition [H] to conform to the load vectors, thus,

e [ P ]
""" ' 7.37
pr : Hxx [ ]

After expanding [7.37]

1
U= (1P) Hpp] [P) + [P] (] [X]
[7.38]
+ [X] [Hyp] [P] + [X][Hyx ) [X])
Utilising the theorem of least work and noting that the [H] matrix is symmetric
gives
oU

ﬁ= [pr] [P] + [H, ] [X] =0 [7.39]

from which the redundants are determined as

[X] = ~[Hxx] ™" [Hyp] [P] [7.40]

Solving for [X] from [7.40] all internal forces can be determined from
[7.31].

Summarising, the essential steps in applying the flexibility method to lead to
the solution of structural problems may be stated as follows:

1. Idealise the structural problem to be analysed
2. Specify the redundant forces and identify the internal member forces
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3. Find the [B,] matrix for unit values of external forces; only one external
force must act at a time with all other forces held at zero

4. Find the [B,] matrix for unit values of redundant forces; only one
redundant force must act at a time with all other forces held at zero

5. Find the flexibility matrix [F'] for all members following the sequential
order of the member forces in [By] and [B,]

6. Formulate the [H] matrix of [7.36]

. Calculate the redundant forces [X] from [7.40]

8. Calculate the internal forces [S] from [7.31]

~1

EXAMPLE 7.1  Using the flexibility matrix method determine the bar forces
in the truss with double diagonal system shown in Fig. 7.7(a). The area of all
top chord is twice the area of all remaining members.

ﬁ’ =JO kN
o %DA B B =I0kN
3m | (a)
— D & F
1_,, _4m 4 4m
Xs e
x, X,
(b)
X
X' 2
Z Z %
Figure 7.7

As can be easily seen, the truss is redundant to the second degree. For the
selection of the redundant members several choices exist. Here members AE and
BE and the reaction at A are taken as the redundants, then the truss is reduced
to a determinate one as shown in Fig. 7.7(b).

To determine the [Bo] matrix, P, and P, are set unit values one at a time
with all other forces including the redundants held at zero, then calculate the
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internal forces in all members for each case. Thus,

P, =1 P, =1 Member
[ 0 0o ] AB
—0.667 +0.500 BC
—0.500 —-0.375 CF
0 0 FE
[Bo] = | +0.667 0.500 ED
0 0 DA
—0.833 +0.625 DB
+0.833 +0.625 CE
—0.500 -0.375 BE
0 0 AE
| O 0 | BF

Similarly to determine the [B;] matrix the redundants X, X, and X; are
set unit values one at a time with all other forces including the applied loads
held at zero. The internal forces in each case are

X, =1 Xy =1 X;3=1 Member
—0.80 0 1.0 AB
0 -0.8 +0.5 BC
0 —0.6 +0.375 CF
0 -0.8 0 FE
—0.8 0 —0.5 ED
[B,]=1-06 0 0 DA
1.0 0 —0.625 DB
0 1.0 —0.625 CE
—0.6 -0.6 0.375 BE
1.0 0 0 AE
| 0 1.0 0 BF

The flexibility matrix for the members is
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From [7.36]

[H] = [Bo | B;]T [F][Bo | By]

substituting and carrying out the matrix multiplications gives

F11.111 1.792 :+ —-5.400 7.031 —3.125 7
| 1.792 6.25 E 2.200 3.675 —=5.250
[H] a8 T
—-5.400 2200  16.000 1.080 —3.800
7.031 3.675 E 1.080 16.000 —-5.275
| —3.125 —-5.250 + —-3.800 -—-5.275 8.250
[pr i Hpy
H, ' He]

The redundants are determined using [7.40]
16.000 1.080 —3.800 |~! | 5.400 2.200 [10]

[X]=] 1.080 16.000 —5.275 7.031 3.675 | L10
—-3.800 —5.275 8.250 -3.125 -=5.250
Solving for the redundants,
(X, 4.617
X, | =1-3.743
| X3 9.883
The bar forces are determined using [7.3]
Nasl [ 6.197]
Npc 6.265
Ncr —2.799
Nrg 2.997
Ngp| | 3.054
Noal  |-2.759
Npg —3.654
Ncg 4.661
Ngg —5.558
Nag 4.598
| Vg | | 3.747_
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EXAMPLE 7.2 Determine the shear force and bending moment values in the

continuous beam of Fig. 7.8 using the flexibility matrix method.
P =10kN F, =5kN

5m S5m |

5m ] 5m |
r |

_Tﬁ§>_

2
|
™

E ] = constant

o B }
| |
! |

10m | 10m '

|
Figure 7.8

i 3 l 5
e 2 4 o

(a)

(b)

The beam is indeterminate to the first degree and the reaction at mode 5 is

chosen as the redundant as shown in Fig. 7.8(b).

To determine the [By] matrix, P; and P, are set unit values one at a time,

thus
Pi=1 P,=1
05 -05] v,
0 o M
05  -05| ¥,
25 =25 M,
[Bo] =
0 1 Vs
0 -5 M,
0 0 v,
| 0 ol M,
Similarly the [B, | matrix is determined setting X, = | thus
Xl =1
11 v,
o| M,
1 Vs
s| M,
[B,]=
1] v,
10] M,
-1 Va4
5| M,
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The member flexibility matrix from [7.20] neglecting the axial deformation
is

'[50 15] i
15 6
[50 15]
0.833
[F] =T 15 6
I [50 15]
15 6
[50 15:|
15 6
L -
Using [7.36] to solve for the [H] matrix
[H] = [Bo i By]"[F][Bo i By]
250 =375 ¢ 750
0.833 :
=" | =375 1500 : -=325.0
4] 1) S oo
750 —325.0 : 800.0
Hpp 1 Hpx
pr E Hxx

The redundant is determined using [7.40]

1
[75 —325] [10]
= 1.09375 kN

" 800
5
The shear force and bending moment values at the indicated nodes are
obtained using [7.31).

. Hence,

X1=

vl [os —os i 110 7 [ 3594]
M, 0 0 ol | s 0

v, 05 -05 § 1| f------- —6.406

My| =| 25 —25 | 5| |1.09375] = | 17.969

Vs 0o 1 -1 3.906

M, 0 -5 | 10 —14.063
Va 0 0 | -1 ~1.094
M| | o o 5 | | 5469
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7.4 THE STIFFNESS METHOD

As in the flexibility method, the stiffness method considers a structure as an
assemblage of individual members. The connecting members are called node
points. The fundamental difference in using the stiffness method is that the
individual displacements of the nodes are taken as the unknowns. In the stiffness
method the number of unknowns to be determined is the same as the degree of
kinematic indeterminateness.

In this method, the first step is to derive the stiffness matrix for a
component member by relating the member forces to the member deformations.
In a similar manner the nodal forces must be related to the nodal displacements
by the total stiffness matrix obtained from an assemblage of the stiffness matrices
of the individual members. Finally, from equilibrium conditions the nodal forces
obtained from the unknown nodal displacements must balance the externally
applied nodal forces to find the total solution; that is, determining all unknown
displacements, reactions and member forces. In developing the stiffness method,
the same coordinate systems are used that were employed in the flexibility
method.

Member Stiffnesses

The relationship between the forces acting at the nodes P; and their corresponding
nodal displacements forms the stiffness matrix approach. This relationship is given
in matrix notation by [7.14] and in its generalised form by [7.15].

Consider a prismatic axial rod element m the ends of which are denoted as i
and j as shown in Fig. 7.9.

(EA)m i

Pi’(')'. | l_-—P]" r‘}j a)
]
dj =)
P _Ea -P__EA  b)
i=T ===
6: _
j=1
P-_EA __ _ H_... P - EA
i L J L

Figure 7.9

The relationship between the axial forces and the corresponding displacements
of the rod is

)
Pj kii ki1 L8 |
183

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com



METHODS OF STRUCTURAL ANALYSIS

The coefficients of the stiffness matrix are found by considering two distinct
displacement states. The first state is to let the nodal coordinate displacement
8; = 1 as shown in Fig. 7.9(b) while holding the others at zero. Imposing
equilibrium on the forces gives

EA
P;= _P,-=(?) N [7.42]

The second state is similar, but distinct from the first. Following the same
procedure as in the first state provides

P =P = (i_A) [7.43]

Combining the results given by [7.42] and [7.43] into a single matrix equation
yields the force--displacement relationship of an axial rod element

P; (EA) 1L —=1] |8
=|— 7.44
P; L )m|-1 1| 18; [7.44]

j j

Consider a prismatic beam element shown in Fig. 7.10. Using the same
procedure used in obtaining [7.23] to [7.25] the force—displacement
relationship for the given nodal coordinate system may be determined by
assigning unit values to the displacements as shown in Fig. 7.10(b) and (c).
The coefficients are shown for unit displacements at the end ; similar

Mi, i (E1)m MJ 9
C | ? "
E’ ’ "’l 3 ’ Aj
I L |
I |
12 e/
C. -12€170°
AI=‘I N 2 (b)
-6E1/L
4EI/L
(‘ 2E1/L (c)
l 61 =
. 6e1/.°
-6E1/L
Figure 7.10
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coefficients are obtained for unit displacements at end j. Thus

[ P; ] 12 —6L —12 —6L 1[5
M| grl-eL 4> 6L 22| |e6;

== [7.45]
P, | L7|-12 6L 12 6L | |9
M; | —6L 2L 6L 4L’ | |9;
Transformation Matrices

If the properties of an element is known in terms of local axes, the transforma-
tions of these forces and displacements to the global coordinates is a necessary
step in stiffness matrix formulation. Figure 7.11 shows member i described by
the two coordinate systems. The iocal coordinates are shown asx’ and y' and
global coordinates as x and y. In this text, the forces displacements and stiffness
matrices with respect to local axes are identified by primes. The prime is omitted
when written with respect to global axes.

+.

-

o I
N |

C x C

(a) Local {b) Global
Figure 7.11

v

—

Referring to Fig. 7.11, the relationship between the quantities in the local
and global axes for flexural members is established as

[Py ] [ cosa  sina 0 0 0 0) Px,-

P;,. —sina cosa O 0 0 o| |Pu

M; 0 0o 1 i 0 o of |m

POl S Peessesesssroneeeenees | [746]
Py 0 0 0 1 cosa sina O] |Py

Py; 0 0 0 . —sina  cosa O] |Py;

Ml Lo 0o 0 i 0 0o 1 |m

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com



METHODS OF STRUCTURAL ANALYSIS

and for axial members, after omitting M and 6, the relationship is

i P,;" [ cosa sina 0 0 |[P;]
P); —sina  cos a 0 0 P,
"= > (7.47)
P 0 0 cosa  sina || Py
P | O 0 —sina cosa || Py ]

Equations [7.46] and [7.47] may be written in compact matrix form
1] = [T][P] [7.48]

where [T is the rotational transformation matrix, which is a function of the
direction cosines between the two sets of axes, for the particular system shown,
Solving [7.48] for [P]

[Pl = [T~ [P']
Tens [7.49]
=[1]"[P]

Such a matrix is called an orthogonal matrix, which may be defined as a square
matrix having an inverse equal to its transpose.
If the displacements are denoted by [§] then it follows that

(6] = [T] (5] [7.50]

The transformation matrix [7] may be applied to obtain the stiffness matrix
in global coordinates. From the definition of stiffness, that is [P] = [k] [6], it
follows that

[P'] = [K'][8'] [7.51]

Substituting [7.48] and [7.50] into [7.51] and noting that 77 = T~ for
orthogonal matrices

(7] [P] = [K'][T] (8]

or
[P] = [T'][£'](T] (8]
= [T17 (K] [T] 8]
= [k] [8] [7.52]
Hence, the transformed stiffness matrix is given by
(k] = [T17[£'] [T] [7.53]

Using the relationship derived above, the stiffness matrix for axial members
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(Fig. 7.11) in global coordinates will be

MmN
EA T R
[k] = (—) """""""" y Tt [7'54]
L/m |2 i A2
B VEESTCRR A VIS
where A = cos a and u = sin a. Similarly, for flexural members
[ 122 : -
1w 12 i Symmetric
2 ]
EI 6Ly —6L\ 4L
k] = Z‘g """"""""""""""""" iy
m | _12u? 122 —6Lu ¢ 12u?
12w —122%  6LN i —12aw 122
6Ly —6L\ 212 ¢ —6Lpu 6L\ 4L?

Assembly of Element Matrices

It is important to form the total assemblage nodal stiffness matrix of a structure
from the stiffness matrices of the separate structural elements. This involves
only simple additions when all element stiffness matrices have been expressed in
the same global coordinate system.

Consider the axial member system shown in Fig. 7.12 with a total of three
possible joint displacements one for each node. The members have individual
stiffness constants (E4/L), and (EA/L), as shown in the figure.

| (EAJ, 2 (EAJ,_ 3
| Ly L L2 |
| l 1
Figure 7.12

The order of the stiffness matrix for the assemblage will be 3 x 3. The individual
member stiffness matrices are:

EA\ [ 1 -1]!
UCI]:(—L_)
1 L1 112
] ] [7.56]
] (EA) 1 —173
’ L/, L1 114
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The assembled stiffness matrix for the complete system can be formed by
superposition of the individual element stiffnesses contributing to each nodal
point. Thus, the assembled stiffness matrix for the system shown in Fig. 7.12
becomes

K] = —(‘i—A)l (E%)l+(%é)2 —(Ef)z B [7.57]

In a similar manner, it may be concluded that the order of the global stiffness
matrix of a system is equal to the total number of degrees of freedom of the
system. The order of the matrix may be expressed as the sum of the unknown
displacements f and the prescribed (support) displacements s. After reordering
the rows and columns to separate the elements corresponding to the supports
from the remainder, the rearranged stiffness matrix may be written as

P K Y ¢ A
[f] [fff] [f] [7.58]
Ps st v K Ag
Method of Solution

Expanding [7.58] and noting that the support displacements, {A;} =0

[P7] = [Kgr] [Af] [7.59(a)]
[Ps] = [Kgr] [Af] [7.59(b)]

The vectors of all unknown nodal displacements (at unsupported nodes) are
obtained from [7.59(a)]

[Af] = Kyl 7' [Pf] [7.60]

When [Af] has been found from [7.60], the support reactions by substitution
of the results in [7.59(b)] will be

[Ps] = [Kgf] [Kyfl ™ [Pf] [7.61]

The internal force in any element m may be obtained by substituting the
calculated degrees of freedom for that element, designated by [A,, ], into the

element stiffness matrix [k,, ]. Thus, the joint force component acting on that
element becomes

[Prn] = [km] [Am] [7.62]
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For the case of an axial member shown in Fig. 7.11 the member force,
denoted by P, is found to be

P, =P;jcosa+Py;sina [7.63]
but
Py = ((8xj — Sxi)cos?at (8, — 8y;)cos a sin a)
[7.64]
EA . * .2
P, = - ((6xj — 8xi)cos asin ah(Sy,- — 8,,;)sin"a)
Rearranging and writing in matrix form, [7.64] may be written as
5. — 5.
P, = (E—j) [cosa sina] [ H xl] [7.65]
m i~ Oyi

Similarly, for the case of a beam element [7.45] and the true nodal
displacements are used and the internal forces for the beam element taken to be
the shear and bending moments are

50T
Vi EI 12 —6L —12 —6L 0;
=\ 5 [7.66]
M; L) m L-6L  4L*> 6L  2L?] |&,,
[0 ]

When these are external loads acting between the joints of a beam element the
concept of equivaient loads must be adopted. The member action is then
computed by adding the effects of the member end deformation to the fixed-end
actions produced by the loads. In a similar manner, the support reactions are
computed by adding the fixed-end effects of the loads. Thus [7.14] may be
written as

[P1= [K]1[A] - [P*] [7.67]
where [PF] is the load vector of the fixed-end actions.

EXAMPLE 7.3  Determine the bar forces, using the stiffness matrix method, of
the truss shown in Fig. 7.13. EA = constant.

Member data for the truss

Member ends Member properties Direction cosines
Member i J A L Cos o sin «
1 A B A L 0 1
2 A C A 1.155L -0.5 —0.866
3 A D A 1.4146L 0.707 —0.707
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(a) (b)
Figure 7.13

The member stiffnesses oriented in global coordinate system are obtained from
[7.54].

Member AB
[0 0 0 0171
EA | O 1 0 -112
[k1]=_
L |o 0 0 013
|0 -1 0 04
Member AC
[ 0.25 0433 -025 —0433]1
EA 0.433 0.75 —0.433 —-0.75
k] =

1.155L | —025 —0.433 0.25 0.433
| 0433 —0.75 0.433 0.75 |

(o NV N ]

05 -05 -05 05171

FA -05 05 05 -05]2
“1414L |05 05 05 -05 (7
05 -05 —-05 05]8

k3

After assemblage of the element stiffness matrices, the global stiffness
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